Differential inequalities for Riesz means and Weyl-type bounds for eigenvalues
نویسندگان
چکیده
منابع مشابه
Differential inequalities for Riesz means and Weyl-type bounds for eigenvalues
We derive differential inequalities and difference inequalities for Riesz means of eigenvalues of the Dirichlet Laplacian, Rσ(z) := ∑ k (z − λk) σ +. Here {λk} ∞ k=1 are the ordered eigenvalues of the Laplacian on a bounded domain Ω ⊂ Rd, and x+ := max(0, x) denotes the positive part of the quantity x. As corollaries of these inequalities, we derive Weyl-type bounds on λk, on averages such as λ...
متن کامل. SP ] 2 4 M ay 2 00 7 Differential inequalities for Riesz means and Weyl - type bounds for eigenvalues 1
We derive differential inequalities and difference inequalities for Riesz means of eigenvalues of the Dirichlet Laplacian, Rσ(z) := ∑ k (z − λk) σ +. Here {λk} ∞ k=1 are the ordered eigenvalues of the Laplacian on a bounded domain Ω ⊂ Rd, and x+ := max(0, x) denotes the positive part of the quantity x. As corollaries of these inequalities, we derive Weyl-type bounds on λk, on averages such as λ...
متن کاملOn Riesz Means of Eigenvalues
In this article we prove the equivalence of certain inequalities for Riesz means of eigenvalues of the Dirichlet Laplacian with a classical inequality of Kac. Connections are made via integral transforms including those of Laplace, Legendre, Weyl, and Mellin, and the Riemann-Liouville fractional transform. We also prove new universal eigenvalue inequalities and monotonicity principles for Diric...
متن کاملWeighted Inequalities for Bochner-riesz Means in the Plane
for some fixed large N0; we shall call such weights admissible. Rubio de Francia [11] showed that for every w ∈ L(R) there is a nonnegative W ∈ L(R) such that ‖W‖2 ≤ Cλ‖w‖2, Cλ < ∞ if λ > 0, and the analogous weighted norm inequality for S t holds uniformly in t. He used methods related to factorization theory of operators and the proof gave no information on how to construct w from W . In [3] ...
متن کاملOptimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means
We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2008
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2008.02.016